Lattice Boltzmann Method
In Lattice Boltzmann Method (LBM), fictitious particles resembling groups of molecules are considered in a lattice with a finite set of velocities. These particles collide at the lattice nodes and propagate in such a way that the Navier-Stokes hydrodynamics is recovered in the macroscopic limit.
At SankhyaSutra Labs, we use Entropic Lattice Boltzmann formulations for hydrodynamics, which is inherently stable. Entropic LBM does not require empirical modelling approaches, such as Reynolds Average Navier-Stokes (RANS) approach for turbulent flow. The accuracy of Entropic LBM is similar to Large Eddy Simulation (LES) for low resolution and smoothly approaches the accuracy level of Direct Numerical Simulation (DNS) as resolution is increased.
We use higher order LB model, where order refers to number of discrete velocities. This allows us to handle flows with higher Reynolds number and higher Mach number,
Conventional LBM implementations use simple cubic lattice. An innovative feature of Sankhyasutra’s technology is the use body centred cubic lattice, which captures geometry better than SC lattice.
Being inherently parallelizable, LBM scales almost linearly with the available compute power. In other words, there is no inherent limitation on the size of the problem that can be accurately simulated given adequate computational resources.